Search results for "Cellulose Nanofibrils"

showing 4 items of 4 documents

Scalable manufacturing of fibrous nanocomposites for multifunctional liquid sensing

2021

This research is supported by the Advanced Manufacturing Program (No. 1927623) from the National Science Foundation and by the McIntire-Stennis Cooperative Forestry Research Program (No. 1020630) from the USDA National Institute of Food and Agriculture. The authors also thank WestRock Paper Company for donated the wood pulp used in this research. Open access funding is enabled and organized by CERN. Cellulose-based paper electronics is an attractive technology to meet the growing demands for naturally abundant, biocompatible, biodegradable, flexible, inexpensive, lightweight and highly miniaturizable sensory materials. The price reduction of industrial carbon nanotube (CNT) grades offers op…

Materials scienceNanocompositeOrders of magnitude (temperature)Biomedical EngineeringPharmaceutical ScienceNanoparticleForming processesBioengineeringNanotechnologyLiquid SensingCarbon nanotubelaw.inventionchemistry.chemical_compoundCellulose NanofibrilschemistrylawLeak DetectionEquivalent circuitCarbon NanotubesGeneral Materials ScienceElectronicsDetectors and Experimental TechniquesCellulosePaper-Based ElectronicsBiotechnologyNano Today
researchProduct

Nanoporous kaolin

2017

Cellulose nano- and microfibrils (CNF/CMF) grades vary significantly based on the raw materials and process treatments used. In this study four different CNF/CMF grades were combined with kaolin clay pigment particles to form nanoporous composites. The attained composite properties like porosity, surface smoothness, mechanical properties and density properties depended strongly on the raw materials used. In general, higher kaolin content (~80 wt%) led to controllable shrinkage during drying, which resulted in improved dimensional stability of composites, compared to a lower kaolin content (~50 wt%). On the other hand, the use of a plasticizer and a high amount of CNF/CMF was essential to pr…

Materials scienceporosityComposite number02 engineering and technologysubstrateRaw material010402 general chemistry01 natural sciencesNanocellulosechemistry.chemical_compoundcompositeElectrical and Electronic EngineeringCelluloseComposite materialPorosityNatural fibernanocelluloseShrinkageroughnessNanoporous021001 nanoscience & nanotechnology0104 chemical sciencesElectronic Optical and Magnetic Materialschemistrykaolin pigmenttransistors0210 nano-technologycellulose nanofibrils (CNF)Flexible and Printed Electronics
researchProduct

Low-temperature atomic layer deposition of SiO2/Al2O3 multilayer structures constructed on self-standing films of cellulose nanofibrils

2018

In this paper, we have optimized a low-temperature atomic layer deposition (ALD) of SiO 2 using AP-LTO® 330 and ozone (O 3 ) as precursors, and demonstrated its suitability to surface-modify temperature-sensitive bio-based films of cellulose nanofibrils (CNFs). The lowest temperature for the thermal ALD process was 80°C when the silicon precursor residence time was increased by the stop-flow mode. The SiO 2 film deposition rate was dependent on the temperature varying within 1.5–2.2 Å cycle −1 in the temperature range of 80–350°C, respectively. The low-temperature SiO 2 process that resulted was combined with the conventional trimethyl aluminium + H 2 O process in order to prepare thin mul…

Water sensitivityMaterials scienceDiffusion barrierSiliconGeneral Mathematicsta221General Physics and Astronomychemistry.chemical_element02 engineering and technology01 natural sciencesOxygenAtomic layer depositionchemistry.chemical_compoundnanorakenteetHybrid multilayersSiO0103 physical sciencesCelluloseta216diffusion barrierta218low-temperature atomic layer depositionDiffusion barrierLow-temperature atomic layer deposition010302 applied physicsta214ta114water sensitivityta111General Engineeringcellulose nanofibrilsAtmospheric temperature range021001 nanoscience & nanotechnologyhybrid multilayerschemistryChemical engineeringCellulose nanofibrilsohutkalvotSiO20210 nano-technologyLayer (electronics)Water vaporPhilosophical Transactions of the Royal Society A : Mathematical Physical and Engineering Sciences
researchProduct

Cellulose nanofibrils prepared by gentle drying methods reveal the limits of helium ion microscopy imaging

2019

TEMPO-oxidized cellulose nanofibrils (TCNFs) have unique properties, which can be utilised in many application fields from printed electronics to packaging. Visual characterisation of TCNFs has been commonly performed using Scanning Electron Microscopy (SEM). However, a novel imaging technique, Helium Ion Microscopy (HIM), offers benefits over SEM, including higher resolution and the possibility of imaging non-conductive samples uncoated. HIM has not been widely utilized so far, and in this study the capability of HIM for imaging of TCNFs was evaluated. Freeze drying and critical point drying (CPD) techniques were applied to preserve the open fibril structure of the gel-like TCNFs. Both dr…

cellulose nanofibrilshelium ion microscopynanoselluloosamikroskopia
researchProduct